

Generative Adversarial Networks

-Consists of 2 **Convolutional Neural Networks**: a Generator that takes in a low dimensional vector as input and generates the microstructure (or RVE); the Discriminator that takes in a microstructure as input, and predicts whether it is real or fake. -Both the Generator and Discriminator are trained simulatenously, with the Discriminator minimizing and Generator maximizing the same loss (error) function.

of 70 classes (or morphologies) of microstructures in the dataset.

Figure 3: A look at some microstructures generated by the trained GAN.

Learned Latent Space (Design Space)

-The GAN's learned latent space has **512 dimensions**, hence 512 numbers are sampled to generate the RVE using the GAN. -We can reduce this by performing a **Principal Component Analysis** (PCA) of the latent space, and then use the PCs as the basis vectors. -Given an initial vector **W**, denoting the PCs as **V**_i, we can write any transformed vector **W'** in this space as^[2]:

 $W' = W + \Sigma a_i V_i = W + a*V$

-It was shown in [3] that all 512 components aren't needed to describe the latent space. Hence, the problem is estimating the reduced design variable (a_is) given a target RVE.

Key References

]: Karras, Tero et al. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019): 4396-4405. 2]: Rameen Abdal, Yipeng Qin, Peter Wonka; Proceedings of the IEEE/CVF International Conference on Computer Vision 3]: Härkönen, Erik et al. ArXiv abs/2004.02546 (2020)

[4]: Raj, M., Thakre, S., Annabattula, R.K. et al. ntegr Mater Manuf Innov 10, 444–460 (2021).

[5]: Isola, Phillip et al. 2017 IEEE Conference on Computer Vision and Pattern Recogntion (CVPR) (2017): 5967-5976.

Quantification and Optimization of 2-Phase Microstructures using Generative Deep Learning

Presenter: Vir Karan (MM19B057) Guides: Dr Anand K Kanjarla & Dr Ratna Kumar Annabattula

le la				
R2 Scores for Target Properties	U-Net		Pix2Pix	
	Train	Test	Train	Test
Mean Stress	0.98286	0.98125	0.9962	0.9944
Fraction of stress conc. sites	0.93599	0.85853	0.9059	0.8927
9: R2 Scores of the	oredictions	made by th	ne trained l	DL models